organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Bromophenyl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one

P. S. Patil,^a Mohd Mustaqim Rosli,^b Hoong-Kun Fun,^b* Ibrahim Abdul Razak^b and S. M. Dharmaprakash^a

^aDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 30 May 2007; accepted 4 June 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.081; data-to-parameter ratio = 39.4.

In the title molecule, C₁₅H₉BrClFO, the dihedral angle between the two benzene rings is $22.7 (1)^{\circ}$. The crystal structure is stabilized by intermolecular $C-H \cdot \cdot F$ interactions and short $Br \cdot \cdot \cdot Cl$ contacts $[Br \cdot \cdot \cdot Cl = 3.579(1) \text{ Å}]$. The compound can potentially exhibit second-order nonlinear optical properties as it crystallizes in a noncentrosymmetric space group.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995). For general background and related literature, see: Uchida et al. (1998); Watson et al. (1993); Patil, Dharmaprakash et al. (2006); Shettigar et al. (2006). For our previous work on related compounds, see: Patil, Teh, Fun, Babu et al. (2007); Patil, Teh, Fun, Razak et al. (2007).

Experimental

Crystal data C15H9BrClFO $M_r = 339.58$ Orthorhombic, Pna21 a = 27.8814 (4) Å b = 3.9300(1) Å c = 11.9065 (2) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan

V = 1304.64 (4) Å³

Mo Ka radiation

 $\mu = 3.35 \text{ mm}^{-1}$

T = 100.0 (1) K

 $0.59 \times 0.35 \times 0.23 \text{ mm}$

Z = 4

(SADABS; Bruker, 2005)

 $T_{\min} = 0.338, T_{\max} = 0.507$ (expected range = 0.308–0.462) 31202 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$ Here $wR(F^2) = 0.081$ Δ_{ij} $S = 1.05$ Δ_{ij} 6780 reflections All	I-atom parameters constrained $\Delta \rho_{max} = 0.69 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$ absolute structure: Flack (1983),
172 parameters1 restraintFl.	with 3224 Friedel pairs lack parameter: 0.057 (6)

6780 independent reflections 5407 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.047$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots F1^{i}$	0.93	2.42	3.287 (2)	155
$C8-H8A\cdots F1$	0.93	2.21	2.807 (2)	121
$C9-H9A\cdots Cl1$	0.93	2.57	3.041 (2)	112
$C9-H9A\cdots O1$	0.93	2.39	2.765 (3)	104

Symmetry code: (i) $-x + 1, -y + 3, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malavsia for Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064. PSP thanks the DRDO, Government of India, for a Junior Research Fellowship (JRF).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2409).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.
- Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Narayana Rao, D. (2007). J. Cryst. Growth, 303, 520-524.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Babu, H. B. R., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1895-o1896.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2122-o2123.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shettigar, V., Patil, P. S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidra Prasad, J. (2006). J. Cryst. Growth, 295, 44-49.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.
- Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Nonlinear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112-117.

supplementary materials

Acta Cryst. (2007). E63, o3238 [doi:10.1107/S1600536807027365]

1-(4-Bromophenyl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one

P. S. Patil, M. M. Rosli, H.-K. Fun, I. A. Razak and S. M. Dharmaprakash

Comment

Chalcones with appropriate subtituents are a class of nonlinear optical materials (Patil *et al.*, 2006; Patil, Dharmaprakash *et al.*, 2007). As a part of our on-going work on the synthesis and structure determination of subtituted chalcones (Patil, Teh, Fun, Babu *et al.*, 2007, Patil, Teh, Fun, Razak *et al.*, 2007) the crystal structure of the title compound (I) was determined (Fig. 1). The title compound can potentially exhibit second-order NLO properties as it crystallizes in a non-centrosymmetric space group.

All bond lengths and angles in (I) show normal values (Allen *et al.*, 1987) and are comparable to those of a related structure (Patil, Teh, Fun, Babu *et al.*,2007; Patil, Teh, Fun, Razak *et al.*, 2007). The dihedral angle between the benzene rings is 22.7 (1)°. The least-squares plane through the enone group (O1/C7–C9) makes dihedral angles of 13.6 (1) and 9.4 (1)° with the C1–C6 and C10–C15 benzene rings, respectively.

Three intramolecular hydrogen bonds are observed in the molecular structure (Table 1). The intramolecular structure generates S(5) ring motifs for the C9—H9A···O1 and C9—H9A···Cl1 interactions and an S(6) ring motif for an C8—H8A···F1 interaction (Bernstein *et al.*, 1995). The molecules are stacked along the *b* axis and the structure is stabilized by C4—H4A···F1ⁱ intermolecular interactions. Short Br1···Cl1(1 – x, 2 – y, -1/2 + z) contacts [3.579 (1) Å] also contribute to the stabilization of the crystal structure.

Experimental

The experimental procedure is comparable with that reported previously (Patil, Teh, Fun, Babu *et al.*,2007; Patil, Teh, Fun, Razak *et al.*, 2007). The actual quantities used for preparation of (I) were: 2-chloro-6-fluorobenzaldehyde (0.01 mol), 4-bromoacetophenone (0.01 mol), methanol 960 ml) and 5 ml of 10% of NaOH aqueous solution. Crystal suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Refinement

All H atoms were refined using a riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate a hydrogen bonds.

Fig. 2. The crystal packing of (I), viewed down the b axis. Hydrogen bonds and short contacts are shown as dashed lines.

1-(4-bromophenyl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one

Crystal data	
C ₁₅ H ₉ BrClFO	$F_{000} = 672$
$M_r = 339.58$	$D_{\rm x} = 1.729 {\rm ~Mg~m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 8121 reflections
a = 27.8814 (4) Å	$\theta = 2.3 - 37.5^{\circ}$
b = 3.9300 (1) Å	$\mu = 3.35 \text{ mm}^{-1}$
c = 11.9065 (2) Å	T = 100.0 (1) K
$V = 1304.64 (4) \text{ Å}^3$	Block, colourless
Z = 4	$0.59 \times 0.35 \times 0.23 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	6780 independent reflections
Radiation source: fine-focus sealed tube	5407 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 37.5^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 1.5^{\circ}$
ω scans	$h = -47 \rightarrow 46$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -6 \rightarrow 6$
$T_{\min} = 0.338, T_{\max} = 0.507$	$l = -20 \rightarrow 19$
31202 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_o^2) + (0.0227P)^2 + 0.4581P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.081$	$(\Delta/\sigma)_{max} < 0.001$

<i>S</i> = 1.05	$\Delta \rho_{max} = 0.69 \text{ e } \text{\AA}^{-3}$
6780 reflections	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
172 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), with 3224 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.057 (6)

Secondary atom site location: difference Fourier map

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.338269 (6)	1.70184 (5)	0.72708 (2)	0.02248 (5)
C11	0.684369 (18)	0.41618 (14)	0.93374 (4)	0.02392 (10)
F1	0.62050 (5)	0.9222 (4)	0.57020 (10)	0.0244 (3)
01	0.54265 (6)	1.0720 (5)	0.95820 (13)	0.0264 (3)
C1	0.47189 (7)	1.2413 (5)	0.70906 (16)	0.0180 (4)
H1A	0.4909	1.1394	0.6544	0.022*
C2	0.42735 (7)	1.3755 (5)	0.67974 (18)	0.0197 (3)
H2A	0.4163	1.3642	0.6061	0.024*
C3	0.39995 (7)	1.5256 (5)	0.76281 (17)	0.0178 (3)
C4	0.41570 (7)	1.5506 (5)	0.87334 (17)	0.0196 (4)
H4A	0.3968	1.6558	0.9275	0.024*
C5	0.45975 (7)	1.4168 (5)	0.90101 (17)	0.0190 (3)
H5A	0.4707	1.4320	0.9746	0.023*
C6	0.48825 (7)	1.2585 (5)	0.82009 (16)	0.0160 (3)
C7	0.53423 (7)	1.1020 (5)	0.85802 (16)	0.0174 (3)
C8	0.56942 (7)	0.9878 (5)	0.77217 (17)	0.0188 (3)
H8A	0.5645	1.0334	0.6964	0.023*
С9	0.60856 (7)	0.8172 (5)	0.80645 (16)	0.0168 (3)
H9A	0.6100	0.7720	0.8830	0.020*
C10	0.64912 (6)	0.6927 (5)	0.74095 (18)	0.0167 (3)
C11	0.68697 (7)	0.5114 (5)	0.79113 (17)	0.0190 (3)
C12	0.72672 (6)	0.3974 (5)	0.7325 (2)	0.0236 (3)
H12A	0.7509	0.2791	0.7694	0.028*

supplementary materials

C13	0.73008 (8)	0.4611 (6)	0.6183 (2)	0.0259 (4)
H13A	0.7567	0.3860	0.5784	0.031*
C14	0.69366 (8)	0.6376 (6)	0.56320 (19)	0.0238 (4)
H14A	0.6954	0.6803	0.4865	0.029*
C15	0.65495 (7)	0.7471 (5)	0.62546 (19)	0.0198 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01427 (7)	0.02028 (8)	0.03290 (9)	0.00260 (6)	-0.00130 (9)	-0.00051 (11)
Cl1	0.0223 (2)	0.0247 (2)	0.0248 (2)	0.00264 (17)	-0.00752 (18)	0.00313 (18)
F1	0.0225 (6)	0.0322 (7)	0.0186 (5)	0.0032 (5)	-0.0009 (4)	0.0036 (5)
01	0.0253 (7)	0.0362 (9)	0.0177 (7)	0.0073 (7)	-0.0018 (5)	0.0010 (6)
C1	0.0159 (7)	0.0196 (9)	0.0186 (10)	0.0026 (5)	0.0006 (6)	-0.0008 (6)
C2	0.0165 (8)	0.0233 (10)	0.0194 (8)	0.0013 (6)	-0.0011 (6)	-0.0007 (7)
C3	0.0141 (7)	0.0163 (8)	0.0230 (8)	-0.0004 (6)	0.0002 (6)	0.0014 (6)
C4	0.0184 (8)	0.0197 (9)	0.0206 (9)	0.0012 (6)	0.0044 (6)	-0.0028 (7)
C5	0.0191 (8)	0.0205 (9)	0.0173 (8)	0.0003 (7)	0.0008 (6)	-0.0020 (6)
C6	0.0152 (7)	0.0160 (9)	0.0167 (8)	0.0003 (6)	0.0014 (6)	0.0002 (6)
C7	0.0158 (7)	0.0188 (9)	0.0175 (8)	0.0009 (6)	-0.0014 (6)	0.0003 (6)
C8	0.0166 (8)	0.0222 (9)	0.0175 (8)	0.0025 (6)	-0.0002 (6)	0.0013 (6)
C9	0.0155 (8)	0.0169 (8)	0.0181 (8)	0.0005 (6)	0.0000 (6)	0.0007 (6)
C10	0.0126 (6)	0.0164 (7)	0.0212 (10)	-0.0017 (5)	-0.0015 (6)	-0.0002 (6)
C11	0.0159 (8)	0.0160 (8)	0.0252 (9)	-0.0013 (6)	-0.0025 (6)	-0.0004 (6)
C12	0.0139 (7)	0.0184 (7)	0.0384 (10)	0.0005 (5)	-0.0014 (9)	-0.0013 (10)
C13	0.0170 (8)	0.0227 (10)	0.0380 (11)	-0.0037 (7)	0.0069 (8)	-0.0069 (8)
C14	0.0230 (9)	0.0231 (11)	0.0252 (10)	-0.0023 (7)	0.0059 (8)	-0.0040 (7)
C15	0.0176 (8)	0.0189 (10)	0.0229 (9)	-0.0012 (6)	0.0001 (6)	-0.0007 (6)

Geometric parameters (Å, °)

Br1—C3	1.9021 (19)	C7—C8	1.486 (3)
Cl1—C11	1.740 (2)	C8—C9	1.344 (3)
F1—C15	1.353 (3)	C8—H8A	0.9300
O1—C7	1.221 (2)	C9—C10	1.458 (3)
C1—C2	1.394 (3)	С9—Н9А	0.9300
C1—C6	1.400 (3)	C10-C15	1.401 (3)
C1—H1A	0.9300	C10-C11	1.407 (3)
C2—C3	1.382 (3)	C11—C12	1.384 (3)
С2—Н2А	0.9300	C12—C13	1.385 (4)
C3—C4	1.391 (3)	C12—H12A	0.9300
C4—C5	1.376 (3)	C13—C14	1.394 (3)
C4—H4A	0.9300	C13—H13A	0.9300
C5—C6	1.395 (3)	C14—C15	1.378 (3)
С5—Н5А	0.9300	C14—H14A	0.9300
C6—C7	1.492 (3)		
C2—C1—C6	120.57 (18)	С7—С8—Н8А	120.7
C2—C1—H1A	119.7	C8—C9—C10	129.38 (19)

C6—C1—H1A	119.7	С8—С9—Н9А	115.3
C3—C2—C1	118.35 (19)	С10—С9—Н9А	115.3
C3—C2—H2A	120.8	C15—C10—C11	114.03 (18)
C1—C2—H2A	120.8	C15—C10—C9	124.31 (18)
C2—C3—C4	122.19 (18)	C11—C10—C9	121.64 (19)
C2—C3—Br1	119.68 (15)	C12—C11—C10	123.4 (2)
C4—C3—Br1	118.12 (15)	C12—C11—Cl1	117.14 (17)
C5—C4—C3	118.77 (18)	C10-C11-Cl1	119.48 (16)
C5—C4—H4A	120.6	C11—C12—C13	119.4 (2)
C3—C4—H4A	120.6	C11—C12—H12A	120.3
C4—C5—C6	120.89 (18)	C13-C12-H12A	120.3
C4—C5—H5A	119.6	C12—C13—C14	120.18 (19)
С6—С5—Н5А	119.6	С12—С13—Н13А	119.9
C5—C6—C1	119.21 (18)	C14—C13—H13A	119.9
C5—C6—C7	117.66 (17)	C15—C14—C13	118.2 (2)
C1—C6—C7	123.08 (17)	C15-C14-H14A	120.9
O1—C7—C8	121.04 (18)	C13—C14—H14A	120.9
O1—C7—C6	120.04 (18)	F1-C15-C14	117.0 (2)
C8—C7—C6	118.92 (16)	F1-C15-C10	118.21 (18)
C9—C8—C7	118.54 (18)	C14—C15—C10	124.8 (2)
С9—С8—Н8А	120.7		
C6—C1—C2—C3	0.1 (3)	C8—C9—C10—C15	2.9 (3)
C1—C2—C3—C4	0.9 (3)	C8—C9—C10—C11	-178.8 (2)
C1—C2—C3—Br1	-178.45 (15)	C15-C10-C11-C12	0.3 (3)
C2—C3—C4—C5	-1.0 (3)	C9—C10—C11—C12	-178.12 (18)
Br1—C3—C4—C5	178.43 (15)	C15-C10-C11-Cl1	-178.71 (15)
C3—C4—C5—C6	0.0 (3)	C9—C10—C11—Cl1	2.8 (3)
C4—C5—C6—C1	1.0 (3)	C10-C11-C12-C13	-0.2 (3)
C4—C5—C6—C7	-176.51 (19)	Cl1—C11—C12—C13	178.82 (16)
C2—C1—C6—C5	-1.0 (3)	C11-C12-C13-C14	-0.2 (3)
C2—C1—C6—C7	176.34 (19)	C12-C13-C14-C15	0.5 (3)
C5—C6—C7—O1	10.4 (3)	C13-C14-C15-F1	179.01 (19)
C1—C6—C7—O1	-167.0 (2)	C13-C14-C15-C10	-0.4 (3)
C5—C6—C7—C8	-169.02 (18)	C11-C10-C15-F1	-179.39 (18)
C1—C6—C7—C8	13.6 (3)	C9-C10-C15-F1	-1.0 (3)
01—C7—C8—C9	7.1 (3)	C11-C10-C15-C14	0.0 (3)
C6—C7—C8—C9	-173.55 (18)	C9—C10—C15—C14	178.4 (2)
C7—C8—C9—C10	-176.82 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C4—H4A…F1 ⁱ	0.93	2.42	3.287 (2)	155
C8—H8A…F1	0.93	2.21	2.807 (2)	121
C9—H9A…Cl1	0.93	2.57	3.041 (2)	112
С9—Н9А…О1	0.93	2.39	2.765 (3)	104
Symmetry codes: (i) $-x+1, -y+3, z+1/2$.				

Fig. 1

Fig. 2